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Abstract

Convergence difficulties are common in nonlinear analyses of circuits using a Curtice model.

The problem is not the model itself, but limitations of the parameters describing the gate I/V

characteristic. In this paper, we show why that failure occurs, and show how the model can be

modified to prevent it. 

Introduction

The venerable Curtice-Ettenberg FET model (traditionally called, simply, the Curtice model)

[1] has existed for almost two decades. During that time, it has been used extensively for all

kinds of microwave circuit designs. It is as fundamental to GaAs MESFET circuit design as

the Shichman and Hodges model has been for circuits using silicon FETs. The model, in one

form or another, has been implemented in virtually all circuit simulators. Many have extended

the model to include nonlinear capacitances and other effects that were not in the original

publication.

Still, there are perennial problems in using the model. Designers frequently encounter

convergence difficulties and errors from incorrect transconductance, especially near

pinch-off. Most of these problems can be eliminated surprisingly easily; in this paper, we

describe some simple modifications that remove most of the problems.

The Curtice Model

Most simulators’ “Curtice” model is actually an extension of the model described in the

original publication. Even so, the basic equations for the channel current—the part of the

model most interesting to us—remains unchanged. As with most of the classical FET models,

the Curtice model consists of an equivalent circuit for the device that includes linear elements,

nonlinear capacitances, diodes, and a nonlinear current source representing the channel

current. The linear elements model such things as contact resistances and some of the parasitic

capacitances, while the diodes model the gate-to-channel junction. Figure 1 shows the
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equivalent circuit.

The channel current (which we can loosely call the drain current) is given by the following

expression:

(1)

where 

(2)

In the above expressions, Vgs and Vds are the internal gate and drain voltages (i.e., not

including voltage drops across the gate, drain, and source resistances). Vds0 is a particular

voltage, usually the one at which the An polynomial coefficients were determined; β is a

constant; and τ is the gate-to-drain time delay. Note that V1 = Vgs at DC when Vds = Vds0. The

remaining terms, γ and λ, are also constants. 

If we ignore (2) for a moment (say, by assuming that β = 0), Eq. (1) can be put in the form

(3)
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Figure 1. Equivalent circuit of a FET, used in the Curtice model. 

Id fg Vgs( ) fd Vds( )⋅=
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where

(4)

and 

(5)

This is a convenient expression, as it allows us to separate the effects of the gate and drain I/V

characteristics and to determine them easily; fg(Vgs) can be found from a plot of Id at fixed Vds,

and fd(Vds) at fixed Vgs . We can also see, quite clearly, the effect of the two functions. fg(Vgs),

which we call the gate I/V characteristic, is simply a cubic polynomial, which should be easy

to fit to any smoothly varying set of measured data. fd(Vds), the drain I/V characteristic, is a

hyperbolic tangent function. This function is used simply because any FET’s drain I/V

characteristic looks like a hyperbolic tangent curve when Vds > 0. The remaining term,

1 + λ Vds, accounts for DC drain-to-source resistance. 

Now, what about Eq. (2)? This expression simply offsets the gate voltage, at high drain

voltages, to account for the tendency of power FETs to conduct at gate voltages below

pinch-off. In [1], this is described as a shift in pinch-off voltage, but it could also be called a

kind of subthreshold conduction. The correction is necessary only in power devices; models

for small-signal FETs should have β = 0. 

Other elements of the equivalent circuit are straightforward, and we can dispense with them

quickly. The drain, source, and gate resistances are well known parasitics. Cds, the

drain-to-source capacitance, is largely a capacitance between metallizations on the chip, as is

Cgd, the gate-to-drain capacitance. Cgd has a significant nonlinearity only near Vds = 0. Cgs,

the largest capacitance, is moderately nonlinear. It is often modeled as a conventional

Schottky-junction capacitance, although that approach is terribly accurate, especially near

pinch-off. Rds,f and Ci model the dramatic decrease in drain-to-source resistance at RF and

microwave frequencies, and the diodes model conduction of the gate-to-channel junction. 

The Model’s Characteristics 

Users of the Curtice model and, especially, those who create parameter sets for it, should be

aware of some of its characteristics. First, there are only two parameters for adjusting the drain

I/V characteristic, λ and γ, and these have very different effects. As shown in Figure 2, λ
adjusts the slope of the curve, while γ adjusts the location of the knee. Clearly, one cannot

adjust, say, γ to match the knees of a set of drain I/V curves measured at several values of Vgs;

therefore, it is best to match the most important curve, and not worry about the rest. In a power

amplifier, the most important curve is the one representing the highest value of Vgs , because

fg Vgs( ) A0 A1V1 A2V1
2 A3V1

3+ + +=

fd Vds( ) γVds( )tanh 1 λVds+( )=
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the knee of that curve affects calculations of output power. In small-signal circuits, the drain

current and voltage may never come close to the knee, so it doesn’t matter much where it is.

Modelers should be mindful of what the device is intended to do, and create the model

accordingly. 

A second difficulty is that the cubic polynomial used for the gate I/V characteristic does not

guarantee that Id pinches off at Vgs = Vp , where Vp  is the pinch-off voltage. (We assume for

the rest of this article that β = 0 so V1 = Vgs . This does not present any difficulties, since the

β term simply shifts V1  relative to Vgs . As long as V1 is treated properly, it does not matter what

value of Vgs  corresponds to any particular value of V1 .) Furthermore, it is literally impossible

for a cubic polynomial to remain at zero when Vgs < Vp . Thus, in virtually all implementations

of this model, the user can enter a value of Vp , and the simulator then returns zero when

Vgs < Vp . 

Now the problems begin. Even if we force fg(Vgs) to be zero at Vgs = Vp , we have not

guaranteed that the transconductance Gm is also zero at Vgs = Vp ! This is a serious problem, as

a simulation would indicate that the device could amplify at pinch-off, something that real

FETs just don’t do. We need to guarantee that both Gm and Id reach zero at Vgs = Vp . 

This problem was recognized in [1], but no solution was presented. In fact, it is fairly easy to

solve. We first recognize that we have, as a minimum, three basic requirements:

Vds

Id
Increasing λ

Increasing γ

Figure 2. Increasing γ moves the knee of the FET’s drain I/V characteristic to the 
left; increasing λ tilts the current-saturation (flat) part of the curve. 
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1 Id = 0 at Vgs = Vp ;

2 Gm = 0 at Vgs = Vp ;

3 Id = Idss at Vgs = 0.

Imagine that we can factor (4), so it has the form

(6)

We must find the zeros and the term I0; once they are known, we can expand (6) to obtain the

An coefficients. The first of these requirements can be met by making one zero of the

polynomial, say, Vz3, equal to Vp, the pinch-off voltage. As it happens, making a second zero

equal to Vp satisfies the second requirement. Satisfying the third requires

(7)

where we have assumed that Vz2 = Vz3 =Vp and 

(8)

This leaves us only one parameter, Vz1, to adjust the shape of the gate I/V characteristic to

match that of the measured data! Although we might conclude that it is difficult to obtain a

good “fit” to measured data with a Curtice model, it turns out that placing the remaining zero

at a large positive voltage (i.e., a few volts), it is usually easy to obtain good results.

Conversely, it makes it quite easy to fit a Curtice model using a simple spreadsheet or

MathCAD page1; no fancy numerical methods are needed. 

Unfortunately, we’re not out of the woods yet. A set of model parameters determined in this

way might not work very well. To understand this, we must make a small digression into the

subject of nonlinear circuit analysis. 

It is a distressing fact of life in the world of nonlinearity that it is rarely—almost never, in

fact—possible to solve nonlinear sets of equations directly. Invariably, some type of iterative

solution is necessary. To obtain any such solution, we must first estimate it, and then find some

way to improve the solution step by step, until we decide that it is good enough. For this

reason, solutions to sets of nonlinear equations are never perfect; they always come with some

amount of residual error. The trick is to make that error small enough to be negligible. 

The key to solving such equations is to find a process that improves a given, inaccurate

solution. It does not have to solve it completely; as long as it can reliably improve an imperfect

1. See http://www.nonlintec.com/curtice.mcd to download an example. 

fg Vgs( ) I0 Vgs Vz1–( ) Vgs Vz2–( ) Vgs Vz3–( )=

I0
Îdss

Vz1– Vp
2

------------------=

Îdss Idss fd Vd0( )⁄=
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solution, we can start with a rough estimate of the solution, and apply the method to it

repeatedly until the problem is beaten into submission. One of the best techniques is Newton’s

Method, a process that involves using the derivatives of the equations to determine the manner

in which to modify the variables for which the equations must be solved. 

In nonlinear circuit analysis, we use the derivatives of the FET’s I/V characteristic to estimate

new values of the drain and gate voltages. It should be no surprise that those derivatives must

be well behaved; if they have “kinks” in them or, heaven forbid, are discontinuous, the

estimate of the new solution may be very different on the two sides of the kink. If we are

unlucky, and the solution process traverses the kink as it modifies the voltages, the estimated

solution changes suddenly, and the simulator can lose convergence. This is true of both

harmonic-balance analysis and transient (SPICE) analysis. 

By using a polynomial to describe the gate I/V characteristic, and setting it to zero below Vp,

we have created a huge kink in the transconductance—the derivative of Id with respect to

Vgs—at Vgs = Vp . Satisfying the three conditions above are not enough; we must satisfy a

fourth, namely dGm/dVgs = 0 at Vgs = Vp . This extra condition would use up our remaining

zero, leaving nothing to adjust for fitting the measured I/V characteristic to the model. This

just won’t do. 

(In fact, we may have overstated the case a bit. The Curtice model usually works surprisingly

well in spite of this flaw, and as long as the model parameters are well chosen, convergence

failure at reasonable power levels is unlikely. Still, by fixing this problem, the model can be

made significantly more robust, so convergence occurs reliably even at high power levels.) 

Fixing the Model

From this discussion, it appears that we need a couple of specific things:

1 The earlier requirements at Vgs = Vp  and Vgs = 0 must be satisfied; 

2 The additional requirement that dGm/dVgs = 0 at Vgs = Vp  must be met;

3 More parameters must be freed, to provide more degrees of freedom for fitting the

model to measured I/V data.

These requirements have subtle implications. Specifically, the second implies that the FET

must have a “soft” pinch-off characteristic; that is, Id decays gradually around Vgs = Vp , and

the abrupt pinch-off of the classical model cannot exist. That’s actually good, because FETs

pinch off gradually, not abruptly. A model that meets these new requirements therefore is

likely to describe the FET better near pinch-off.

One way to meet some of these requirements is to limit Vgs  to Vgs > Vp  in some numerically
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acceptable way, before using it in (1) and (2). Clearly, we cannot simply define a new Vgs

variable, say Vgs,x  and say 

(9)

because that would reintroduce the kink in Gm. A better solution is to use a function of the

form

(10)

This function limits Vgs,x to a maximum value of Vp, while creating a gradual transition near

Vp. The transition is controlled by δ; a large δ provides a more gradual transition, while δ = 0

creates an abrupt one, equivalent to (9). 

With this change, Id trails off gradually its values at Vp, even as Vgs drops below Vp, and Gm

drops to zero. It does not, however guarantee Id to be zero below pinch-off. In fact, this change

alone can make matters worse: if the model parameters have not been extracted to ensure that

Id = 0 at Vgs = Vp , the FET may show substantial, even negative, current at pinch-off. We need

to make certain that the latter condition is also satisfied. 

There are two ways to implement this second part of the solution. The first is simply to modify

the gate I/V characteristic in some way so that the Id = 0 condition at Vgs = Vp  is met. This

approach probably requires the creation of a new expression for the gate I/V characteristic,

making users’ existing Curtice model libraries obsolete. Recognizing that this solution will

not endear the authors with circuit designers, we may consider a second approach: modify the

existing parameter set in a minimal manner, so that it satisfies these obviously necessary

requirements but does not change the I/V characteristic more than necessary. We should do

this in a way that does not modify the parameters if they already meet the pinch-off conditions. 

We begin by assuming that the gate I/V characteristic simply fails to provide zero current when

Vgs = Vp , but it is otherwise well conceived. This condition is shown in Figure 3. Of course,

many other errors are possible, many of which are frightening. For example, it is possible for

fg(Vgs ) to have a minimum between Vp  and Vgs = 0, so it is actually decreasing at pinch-off as

Vgs  increases. We will not attempt to fix all such errors; at some point, the user has to take

responsibility for creating a model that is at least a reasonable representation of the device. 

After some experimentation, we have determined that a simple and effective way to correct a

problem like the one shown in Figure 3 is simply to distribute the error linearly across the

range Vgs = (Vp , Vmax ), where Vmax is some maximum gate voltage. In many cases, Vmax = 0

Vgs x,

Vgs Vgs Vp>

Vp Vgs Vp≤



=

Vgs x, Vp 0.5 Vgs Vp– Vgs Vp–( )2 δ++( )+=
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is the best value to use, as it preserves the Idss of the model. However, this value may not be

practical in devices having low pinch-off voltages. In such devices, a Vmax  value of a few

tenths of a volt may be preferable. 

The gate I/V characteristic is modified as 

(11)

where V1 (which we have been assuming to be equal to Vgs) is as used in (1) and ∆Id is the

error in Id at Vgs = Vp . This change can be implemented simply by modifying the polynomial

coefficients:

(12)

The modification also works when ∆Id < 0. Additionally, we have found that it provides relief

in many situations that are even uglier than the one shown in Figure 3. Note that the

coefficients are not modified if they satisfy pinch-off conditions as provided. 

Figure 3. An example of a poorly conceived model. The drain current does not 
reach zero at pinch-off, and the transconductance has a strong discon-
tinuity at that point. A simple circuit using this FET model would not 
converge to a solution in harmonic-balance analysis. (A0 = 0.022, 
A1 = 0.046, A2 = -0.037, A3 = 0.030, and Vp = -0.6V.)

fg V1( ) fg V1( )
Vmax V1–

Vmax Vp–
------------------------∆Id–→

A0 A0 ∆Id

Vmax

Vmax Vp–
------------------------–→

A1 A1
∆Id

Vmax Vp–
------------------------–→
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These two modifications guarantee that at least two of the polynomial coefficients in (4) can

be determined independently, while retaining proper pinch-off characteristics and Idss. The

other two coefficients cannot be treated independently, as they are constrained by (12), but the

user still has somewhat more freedom than before in selecting those coefficients. If the fg(Vgs )

polynomial is well determined, although perhaps without satisfying the pinch-off conditions,

these operations force fg(Vgs) to satisfy them with minimal modification.

Example

The above modification has been included in the Curtice model used in Microwave Office, ver.

5.0 [2]. These modifications could be included in any other circuit simulator that provides a

capability for users to write their own models. 

In the Microwave Office implementation, Vmax is normally zero, but is modified so that

Vmax - Vp > 0.5V in all cases. Vmax is not a user-modifiable parameter; that would make it

vulnerable to the same kind of misuse that gives rise to the errors it is designed to correct.

Similarly, δ is set to . This gives a smooth curve at pinch-off, without making the

gate I/V characteristic too soft. 

Figure 4 shows the gate I/V characteristic of a conventional Curtice model that does not pinch

off properly at Vgs = Vp . The current clearly does not reach zero at Vgs = Vp , and a little mental

differentiation shows that the transconductance also is nonzero at pinch-off. In fact, both are

discontinuous. Figure 5 shows the same set of parameters with the above modifications. It is

clear that both the current and transconductance are now well-behaved near pinch-off, and the

characteristic has been modified minimally. The drain-current error of 10 mA at the pinch-off

voltage of -1.4V has been corrected, and the change in drain current is only about 3 mA above

-1V. The value of Idss, 80 mA, is preserved in the corrected characteristic.

Conclusions

The venerable Curtice model can have convergence difficulties when parameter extraction is

imperfect. In the classical model, the user is forced to choose between a parameter set that

matches the entire range of the measured I/V characteristics, or one that operates properly at

pinch-off. We can correct the model, however, by (1) limiting the value of Vgs in a numerically

acceptable manner, and (2) a modifying the A0 and A1 polynomial coefficients in a way that

minimizes changes in the I/V characteristic. Increased accuracy and robustness result. 
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Figure 4. The modeled gate I/V characteristic of a FET that does not pinch off 
properly. A0 = 0.08, A1 = 0.6756, A2 = 0.00612, A3 = -0.00383, and 
Vp = -1.4V.
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Figure 5. The corrected I/V characteristic from Figure 4.


